Diploma in Electronic & Computer Engineering (N44)

Why ECE?

  • One of the most established electronic and computer engineering diplomas in Singapore
  • Strong links to the industry as well as local and overseas universities
  • Choose to specialise in either Computer Networks or Robotics & Communication
  • Six-month internships with leading organisations such as Creative Technology, ST Engineering and Xilinx

About ECE

Electronics and computers are a large part of our daily lives – from the smart phones and laptops that you use to the vehicles that you travel in. You can play a part in shaping the way people live, work and play with the Diploma in Electronic & Computer Engineering (ECE).

ECE gives you a strong foundation in electronic hardware design, software programming skills and computer networks. With our industry-relevant curriculum, you will be well-placed to meet the needs of the industry when you graduate.

In your first year, you will learn the fundamental aspects of engineering with modules such as Computer Programming, Analogue Electronics and Digital Fundamentals. In your second year, you can choose to deepen your expertise in a particular field by pursuing one of our two specialisation options, Computer Networks or Robotics & Communication.

Then, in your final year, put your knowledge to the test with a six-month internship with industry leaders such as Accenture, GlobalFoundries and ST Engineering.

What’s more, you may even get the chance to work on industry-sponsored projects at our technology centres. Plus, you will go on local or overseas study trips that will widen your exposure to the exciting world of engineering.

Further Studies

This diploma is recognised by leading universities both locally and abroad. You may be granted advanced
standing or module exemptions when applying for related degree programmes at the following universities:

Singapore

  • National University of Singapore
  • Nanyang Technological University
  • Singapore Institute of Technology
  • Singapore University of Technology and Design

Australia

  • University of New South Wales
  • Queensland University of Technology United Kingdom
  • University of Edinburgh
  • University of Manchester
  • University of Southampton
  • University of Sheffield
Christopher Chia

Christopher Chia
Electronic & Computer Engineering graduate, Class of 2022

Christopher will be pursuing an undergraduate degree majoring in Engineering Product Development, under a bond-free SUTD scholarship programme

Nicholas Lee Kian Han  
Electronic & Computer Engineering graduate, Class of 2021

Nicholas is pursuing a Bachelor of Engineering in Computer Science at NTU 

Justin Ong Wei Xuan
Electronic & Computer Engineering graduate, Class of 2017

Justin is pursuing a Bachelor of Engineering on Computer Engineering at NTU

Careers

Electronics is one of the world’s largest industries – that means you will enjoy many diverse and exciting career opportunities, such as:

  • Assistant Equipment Engineer
  • Assistant Facility Engineer
  • Assistant Integration Engineer
  • Assistant Process Engineer
  • Assistant Product Engineer
  • Assistant Quality Engineer
  • Embedded Systems Engineer
  • Infrastructure Engineer

Frank Quek
Electronic & Computer Engineering graduate, Class of 2009

Pursued a double degree in Business and Computer Science, under the NTU College Scholarship. Currently, Frank is the CEO at Ty Innovations Pte Ltd

Entry Requirements

AGGREGATE TYPE ELR2B2-C

To be eligible for consideration, candidates must have the following GCE ‘O’ Level examination (or equivalent) results.

Subject'O' Level Grade
English Language1-7
Mathematics (Elementary/Additional)1-6
Science 
(with Physics, Chemistry or Biology component)
or Biotechnology
or Computing/Computer Studies
or Design & Technology
or Electronics/Fundamentals of Electronics
or Engineering Science
or Physical Science
1-6

You must also fulfil the aggregate computation requirements for the ELR2B2-C Aggregate Type listed here (  33KB). This subject will be used for ELR2B2-C aggregate computation.

For students with other qualifications, please refer to the NP website for the entry requirements and admissions exercise period.

Candidates with severe vision deficiency, profound hearing deficiency, uncontrolled epilepsy and/or severe physical impairments, should not apply for the course. Those with colour vision deficiency may be considered, subject to an in-house test.

What You Will Learn

Electrical Engineering Fundamentals (3 Credit Units)
This module provides a foundation in electricity covering basic concepts of electrical circuits and the methods used to analyse them. The module emphasises the understanding of the basic electrical circuit laws (Ohm’s Law, Kirchhoff’s Voltage and Current Laws) and network theorems, and their application to electrical network analysis. Topics covered include fundamentals of electricity, network theorems, capacitance, electromagnetic induction and inductance.

Engineering Mathematics 1 (4 Credit Units)
This module is designed to provide students with the fundamental skills in mathematics required to solve basic engineering problems. Topics are introduced in an order that is intended to keep abreast of the application requirements in engineering modules. The emphasis in each topic is on simple applications and problem solving. Topics include algebra, trigonometry, logarithms, plane analytic geometry, matrices and complex numbers. Throughout the module, there is appropriate use of a Computer Algebra System.

Integrated Real-world Project 1 (4 Credit Units)
This module aims to integrate the knowledge learnt in the semester and apply to a real-world project and further enhanced through relevant contextualization. Students will work in teams and undertake the project development underpinned by the design thinking approach. On completion of the module, students will be able to apply the skills and develop confidence in tackling projects. Data analytics will be introduced using case-based approach and applied in the integrated real-world project.

Career & Professional Preparation 1 will be incorporated to give students a foundational introduction to their three- year diploma course curriculum and how it prepares them for industry. It will help them to embark on their course with the end in mind, through guided reflection of their personal characteristics, and producing an overall game plan for their future education and career goals.

Mechanical Engineering Fundamentals (3 Credit Units)
This module introduces students to the study of external forces in two dimensions and their effect on particles and rigid bodies that are at rest. Students learn the skills to analyse the forces acting on the bodies by drawing free-body diagrams and applying the conditions of equilibrium. Topics include forces and resultants, moments and couples, equilibrium and the concepts of plane friction. This module also aims to equip students with the skills to analyse problems of rigid bodies in motion. Only linear motion in two dimensions will be covered. Topics include kinematics and kinetics of linear motion.

Programming (3 Credit Units)
This practice-oriented module equips students with basic knowledge and skills in computer programming using a suitable high-level language. The main topics include basic computer programming concepts and fundamental programming constructs such as sequences, selection and repetition.

English Language Express* (Credit Units - NA)
English Language Express aims to give you a better grounding in the English Language and to strengthen the written and oral communications skills that you will need in your academic and professional careers. You will be engaged in writing, reading, listening and speaking activities that will develop your ability to speak and write grammatically, coherently and clearly. You will also hone your reading and listening comprehension skills.

Innovation Made Possible^ (3 Credit Units)

* This module is only offered to students who are weaker in the English Language.

^ Interdisciplinary Studies (IS) modules account for 13 credit units of the diploma curriculum. They include modules in communication, innovation and world issues, as well as an interdisciplinary project. By bringing students from diverse diplomas together, the interdisciplinary project fosters collaboration to explore and propose solutions for real-world problems. IS aims to develop students to be agile and self-directed learners, ready for the future workplace.

AC Circuits (3 Credit Units)
This module provides students with basic knowledge of the fundamental principles in electric circuit analysis. The module extends DC network theorems to AC circuits which involve impedances such as capacitance and inductance. The module also includes analysis of simple AC series, parallel and series-parallel combination circuits, concept of AC power and understanding of power factor and its effect on electrical energy usage.

Analogue Electronics (3 Credit Units)
The aim of this module is to lay the foundations in analogue electronics. At the end of this module, students will acquire content knowledge and understanding on the basic concepts of analogue electronics and some applications. Key topics covered in this module include operating characteristics, working principles and applications of discrete electronic devices such as various types of diodes, MOSFETs and BJTs. Practical circuits will be used to enhance and strengthen the learners’ knowledge so that they will acquire the relevant competencies to move on to more specialized modules.

Digital Fundamentals (3 Credit Units)
This module introduces the basic concepts of digital systems. It covers the basics of combinational and sequential logic circuits. Flip-flops and their application in counters and registers will also be discussed. This basic knowledge is essential for students to be able to understand, analyse, and design basic digital circuit system.

Engineering Mathematics 2 (4 Credit Units)
This module is designed to provide students with the fundamental skills in mathematics required to solve basic engineering problems. Topics are introduced in an order that is intended to keep abreast of the application requirements in engineering modules. The emphasis in each topic is on simple applications and problem solving. Throughout the module, there is appropriate use of a Computer Algebra System. Topics include trigonometry, differentiation and simple integration with applications.

Integrated Real-world Project 2 (4 Credit Units)
This module aims to integrate the knowledge learnt in the semester and apply to a real-world project and understand the relevance and application of the modules learnt. Students will work in teams and undertake the project development underpinned by the design thinking approach. On completion of the module, students will be able to apply the skills and develop confidence in tackling projects at the higher levels.

This module will also imbue in students a sense of civic consciousness in the context of engineering and society. It serves to create awareness amongst students about the impact of engineering on society in general. In the process it introduces the application of cultural quotient (CQ) skills and mould students’ disposition to understand and collaborate across diverse cultures in real world settings.

Communication Essentials^ (3 Credit Units)
Health & Wellness^ (1 Credit Unit)

^ Interdisciplinary Studies (IS) modules account for 13 credit units of the diploma curriculum. They include modules in communication, innovation and world issues, as well as an interdisciplinary project. By bringing students from diverse diplomas together, the interdisciplinary project fosters collaboration to explore and propose solutions for real-world problems. IS aims to develop students to be agile and self-directed learners, ready for the future workplace.

COMMON MODULES
Applied Digital Electronics (3 Credit Units)
This module reinforces the concepts learned in Digital Fundamentals through hands on with real digital circuitries. Key digital building blocks like frequency dividers, multiplexer, de-multiplexer and decoder will be introduced. Basic Integrated Circuit Technologies will also be covered. Students will learn to build and troubleshoot basic digital circuit system.

Integrated Real-world Project 3 (4 Credit Units)
This module aims to integrate the knowledge learnt in the semester, deepen the skills in the previous semester and apply to a real-world project. Students will work alone to acquire relevant new skills in CAD design and electronics prototyping and also in teams to undertake the project development underpinned by the design thinking approach. On completion of the module, students will be able to apply the skills and develop confidence in tackling projects at the higher levels.

This module will also imbue in students a sense of civic consciousness in the context of engineering and safety. The module will also imbue in students’ a safety-oriented mindset and develop students’ workplace safety and health (WSH) competencies and raise their safety awareness of self and their surroundings.

Network Fundamentals (4 Credit Units)
This module covers the introduction to the architecture, structure, functions, components, and models of the Internet and other computer networks. The principles and structure of IP addressing and the fundamentals of Ethernet concepts, media, and operations are introduced to provide a foundation knowledge and skills for network infrastructure. Upon completion of the module, students will be able to build simple LANs, perform basic configurations for routers and switches, and implement IP addressing schemes.

Quality Systems & Analytics (3 Credit Units)
This module prepares students to apply quality system management techniques and principles in their future workplace. Topics include Quality Systems and Audits, quality tools and techniques including the application of statistical software for process control, Gage Repeatability and Reproducibility, Hypothesis Testing, Design of Experiments, Statistical Process Control, and Mistake Proofing to optimize and improve products and processes. Process Capability Analysis, Lean Manufacturing for waste elimination and Six Sigma initiatives for defect reduction will also be discussed.


COMPUTER NETWORKS SPECIALISATION OPTION

Servers & Cloud Fundamentals (4 Credit Units)
This module covers the basics of Linux operating system, server and an overview of cloud computing. Concepts for Linux include the use of Linux commands to access and manage directories, files, setting of file security and access rights and basic servers’ implementation, such as DNS and DHCP in a network. For cloud computing, concepts include virtualisation as a foundation for cloud computing and issues related to implementation of cloud services. It also covers simple architecture, design, implementation, management and security of cloud services.


ROBOTICS & COMMUNICATION SPECIALISATION OPTION

Applied Analogue Electronics (4 Credit Units)
This module covers the fundamentals of analogue electronic circuit design and applications. The operating principles and design of commonly used analogue devices and operational amplifier circuits are taught in this module. The main topics include various types of amplifiers, comparators and filters. Applications in various practical circuits are also illustrated in this module.
COMMON MODULES
Integrated Real-world Project 4 (4 Credit Units)
This module aims to integrate the knowledge learnt in the semester, deepen the skills in the previous semester and apply to a real-world project. Students will work alone to acquire relevant new skills in PCB (Printed Circuit Board) design, assembly, testing, trouble-shooting and reworking and also in teams to undertake the project development underpinned by the design thinking approach. On completion of the module, students will be able to apply the skills and develop confidence in tackling projects at the higher levels.

The Career and Professional Preparation 2 will be incorporated to equip students with skills necessary to seek and secure work. They will also be equipped to communicate their personal brand in a positive way. As students sharpen their communication skills, they will also learn how to market themselves effectively.

Microcontroller & Interfacing (5 Credit Units)
This module aims to equip students with a basic foundation in microcontroller and Embedded System. Students will acquire the necessary skills and knowledge through meaningful practical exercises and lectures/tutorials. The knowledge and skills that the students acquire in this module will enable them to implement a microcontroller based system.

Object-oriented Programming (5 Credit Units)
This module introduces object-oriented programming to students who already have a foundation in procedural programming. It covers the fundamental concepts of object-oriented programming with introduction to basic web and database applications.

World Issues: A Singapore Perspective^ (2 Credit Units)

^ Interdisciplinary Studies (IS) modules account for 13 credit units of the diploma curriculum. They include modules in communication, innovation and world issues, as well as an interdisciplinary project. By bringing students from diverse diplomas together, the interdisciplinary project fosters collaboration to explore and propose solutions for real-world problems. IS aims to develop students to be agile and self-directed learners, ready for the future workplace.


COMPUTER NETWORKS SPECIALISATION OPTION
Routing & Switching (4 Credit Units)
This module describes the architecture, components, and operations of routers and switches in a small network. Students learn how to configure a router and a switch for basic functionality. By the end of this module, students will be able to configure and troubleshoot routers and switches and resolve common issues with virtual LANs and interVLAN routing in both IPv4 and IPv6 networks.


ROBOTICS & COMMUNICATION SPECIALISATION OPTION

Communication Systems (4 Credit Units)
This module covers the fundamentals of analogue communication principles. Key topics covered in this module include components of a basic communication system, and factors that affect communication performance. The techniques of modulation and demodulation will be explained to allow students to understand and relate important concepts, including signal representation, performance measurements and system applications.
COMMON MODULES
Integrated Real-world Project 5 (4 Credit Units)
The aim of this module is for students to apply the knowledge learnt, their initiative and creative ability and practical skills to real-world engineering projects. These projects may take the form of an investigation or the development of engineering hardware, software or both. Students will work in teams to undertake the project development underpinned by the design thinking approach. On completion of the module, students will be able to communicate their results, concepts and ideas of the engineering projects they have undertaken and develop confidence in tackling projects at higher levels.

This module will also imbue in students a sense of civic consciousness in the context of engineering and sustainability. It will develop students’ competencies in sustainable development, raise their awareness of sustainability in the context of society and the environment, and appreciate the impact engineering solutions may have on the environment.

Internet of Things (4 Credit Units)
This module aims to equip students with a basic fundamental in the Internet of Things (IoT). Students will learn the system architecture of a typical IoT system with a good understanding of functionalities of its building blocks. They will acquire the necessary skills and knowledge through a series of practical exercises. Upon completion of the module, students will be able to implement a simple IoT system prototype with off-the-shelf equipment, platforms or services.

Mobile Application Programming (4 Credit Units)
This module aims to provide students with hands-on training on basic mobile applications development using an open-source platform. Students will learn basic mobile app architecture and design concepts. They will also have a good understanding of the different building blocks in a mobile app.

Project ID: Connecting the Dots^ (4 Credit Units)

^ Interdisciplinary Studies (IS) modules account for 13 credit units of the diploma curriculum. They include modules in communication, innovation and world issues, as well as an interdisciplinary project. By bringing students from diverse diplomas together, the interdisciplinary project fosters collaboration to explore and propose solutions for real-world problems. IS aims to develop students to be agile and self-directed learners, ready for the future workplace.


COMPUTER NETWORK SPECIALISATION OPTION
Scaling & Connecting Networks (4 Credit Units)
This module describes the architecture, components, and operations of routers and switches in larger and more complex networks and on the WAN technologies and network services required by converged applications in a complex network. Students learn how to configure routers and switches for advanced functionality. By the end of this module, students will be able to configure and troubleshoot routers and switches and resolve common issues with OSPF, EIGRP, and STP in both IPv4 and IPv6 networks. Students will also develop the knowledge and skills needed to implement a WLAN in a small-to-medium network, configure PPPoE, GRE, single-homed eBGP, extended IPv4 and IPv6 ACLs., SNMP and Cisco SPAN, QoS and the trends in networking including Cloud, virtualization, and SDN.


ROBOTICS & COMMUNICATION SPECIALISATION OPTION

Embedded Robotics (4 Credit Units)
This module provides an introduction to the fundamental analysis of various mechanisms and electrical circuits within the context of robotics discipline. It also covers different types of sensors used in robotics applications. The operating principles of sensors (infrared light, ultrasonic sound and embedded vision) as well as the basic signal conditioning such as signal amplification and noise filtering.
6-Month Internship (Local/Overseas) (20 Credit Units)
6-month Internship is a module whereby students will be attached to sponsoring companies for a period of approximately 22 weeks. During their internships, they will undertake projects assigned by the companies or be involved in operations or maintenance-related work. Student internships may be undertaken locally or overseas.

or

6-Month Final Year Project (20 Credit Units)
In this module, students work full-time on their final-year projects for 20 weeks. Students will work on project titles ranging from system design and integration, research and development, computer applications and others. Students will also be given training in relevant technologies and skills at the beginning of the programme to build their knowledge. They learn and apply project management to enable them to complete their projects in time. They work closely with their supervisors on research, design, implementation, problem solving, testing, and analysis of results and modify the prototype to meet design requirements; and develop a good standard of technical skills in construction of systems or circuit boards and operating measuring instruments, equipment and tools. Project work cultivates a sense of positive work attitude, team spirit and co-operation among the students. They will also write the project reports; prepare for project presentations and project inspections.