The largest academic school in Ngee Ann Polytechnic, the School of Engineering (SoE) brings together four clusters:

- Built Environment
- Electrical & Electronic
- Mechanical & Manufacturing
- Engineering Applications

Each cluster offers diploma courses in its respective area of discipline with specialised learning facilities and teaching expertise. Our diplomas are infused with multidisciplinary elements to create well-rounded engineers and professionals who are highly valued by the industry for their analytical and problem-solving skills.

ENGINEERING COMMON PROGRAMME (ECP)

With so many courses to choose from, it is important that our students end up with the diploma course that best matches their interests.

Ngee Ann’s School of Engineering offers an exclusive Engineering Common Programme that will give students the flexibility to make their choice only at the end of the first semester.

There are nine core engineering courses:

- Aerospace Electronics (AE)
- Aerospace Technology (AT)
- Audio-visual Technology (AVT)
- Biomedical Engineering (BME)
- Electrical Engineering (EE)
- Electronic & Computer Engineering (ECE)
- Marine & Offshore Technology (MOT)
- Mechanical Engineering (ME)
- Mechatronic Engineering (MTE)

All first-year students taking the above engineering courses will share a common curriculum, including those who opt for the ECP. However, ECP students have the added advantage of being able to choose the course that they wish to continue with at the end of their first semester. This enables them to find the best fit and to make a more informed decision regarding their careers. During the first semester, all ECP students will be taken care of by the Multidiscipline Engineering Division to help them settle in campus life. They will also have the opportunity to bond with all of their peers, regardless of their future area of study and they will be able to attend a wide range of student development programmes such as Image Enhancement Workshops, Music & Arts Appreciation, and Adventure Camp.
COURSES OFFERED IN THE SCHOOL OF ENGINEERING

The School of Engineering offers a total of 19 full-time Diploma courses. In addition, the School offers Advanced Diploma courses, Specialist Diploma courses, part-time Diploma courses, as well as short courses for the public.

One important aspect of Ngee Ann’s Engineering courses is the six-month Industrial Attachment Programme (IAP) and the alternative in-house Project Design & Development (PDD) programme for graduating students.

The IAP and PDD provide our students with experiential training, and facilitate their passage into working life. Under the two programmes, students work to solve real-life industrial issues encountered by our industrial partners. Greater emphasis has also been placed on research-oriented collaborative projects.

In addition to core modules, students can choose from a plethora of elective modules under the enhanced Ngee Ann Learning Model (NLM); these modules fall under the categories of Communication, Media & the Arts, Life Skills, Entrepreneurship, and Science & Technology. The NLM aims to nurture graduates and give them confidence to face the challenges of the New Economy.

The full-time diploma courses offered by SoE are:

Built Environment
- Diploma in Civil & Environmental Engineering (CEE)
- Diploma in Environmental & Water Technology (EWT)
- Diploma in Facilities Management for Business (FMB)
- Diploma in Real Estate Business (REB)

Electrical & Electronic
- Diploma in Aerospace Electronics (AE)
- Diploma in Audio-visual Technology (AVT)
- Diploma in Biomedical Engineering (BME)
- Diploma in Electrical Engineering (EE)
- Diploma in Electronic & Computer Engineering (ECE)
- Diploma in Network Systems & Security (NSS)

Mechanical & Manufacturing
- Diploma in Aerospace Technology (AT)
- Diploma in Marine & Offshore Technology (MOT)
- Diploma in Mechanical Engineering (ME)
- Diploma in Mechatronic Engineering (MTE)
- Diploma in Product Design & Innovation (PDI)

Engineering Applications
- Diploma in Business Process & Quality Engineering (BPQE)
- Diploma in Engineering Informatics (EI)
- Diploma in International Supply Chain Management (ISCM)
- Diploma in Logistics Management (LMGT)

ELECTIVE MODULES AND DIPLOMA PLUS PROGRAMME

SoE recently reviewed its course structure and curricula to: (i) provide greater flexibility and breadth to cater to students’ learning abilities and interests in engineering and non-engineering areas; (ii) strengthen the foundational knowledge of engineering students; and (iii) cater to students with diverse aspirations to pursue further study or join the industry.

Under the revised course structure, SoE students can select elective modules from a wide range of clusters available under both engineering and non-engineering categories. Students have to select two elective modules to complete their diploma. Moreover, all SoE students qualify for a Diploma Plus Certificate when they complete two additional elective modules; that is, a total of four elective modules during their entire course of study, and satisfy the Diploma Plus Programme requirement that three of the four completed elective modules must be from the same cluster. The Diploma Plus Certificate will better prepare students who wish to pursue a university degree, or increase their employability in discipline-specific areas. If a student takes additional elective modules beyond the Diploma Plus Programme requirements, he will also be awarded with enhancement certificates for each additional completed module. The full range of elective module clusters offered by SoE is listed below.

Engineering Category
- Advanced Engineering Mathematics Cluster
- Aerospace Design Cluster
- Aerospace Electronics Cluster
- Applied Physics Cluster
- Applied Technology Cluster
- Biomedical Engineering Cluster
- Computer & Communication Systems Cluster
- Decision Management for Quality Cluster
- Electrical Control & Measurement Cluster
- Industrial Control Cluster
- Industrial Electronics Cluster
- Information Technology Cluster
- International Freight Forwarding & e-Logistics Cluster
- Mechanical Technology Cluster
- Microelectronics Cluster
- Network Systems & Security Cluster
- Stage Management & Technology Cluster
- Telecommunication Distribution Technology Cluster
- Workplace Safety & Health Cluster

Non-Engineering Category
- Economics & Financial Applications Cluster
- Green Development Cluster
- Leisure & Retail Management Cluster
- Tourism Management Cluster

For the description of individual elective modules within each cluster, please refer to page 182. For details on the specific clusters available to different diplomas, please refer to the course module section of each diploma under the heading Across-Level Modules.

Engineering students can also pursue Diploma Plus Programmes in Business, Innovation Management, and Languages, which are run by Ngee Ann’s other academic schools.
MAJOR ACHIEVEMENTS

Over the years, SoE has consistently made its mark in many ways, both locally and abroad. Some of the School’s major achievements are highlighted below:

SoE brought glory to Singapore by making a clean sweep in the Sumo category of RoboGames 2006, which was held in the United States. Ngee Ann’s Sumo robots won the Gold Award in all three events of the Sumo Robot category, namely:

- 3kg (Autonomous) Sumo Robot Competition
- 3kg (Remote-Control) Sumo Robot Competition
- 500g Mini-Sumo Robot Competition

SoE students have produced ingenious ideas to help protect the environment. Two Electrical Engineering graduates emerged victorious at the 2006 Green Wave Environmental Care Project for Schools Competition. Their Water Management System clinched top prize in the tertiary category, marking the first time the top prize has been awarded for this category since the Competition’s inception.

In the Mayor’s Innobiz Award Competition organised by the North East Community Development Council in 2005, SoE’s Clipper and Emergency Traffic Light projects clinched the first and second prizes respectively in the Innovative Product Award Open Category. Another SoE project, Touch-n-Drive Wheelchair, won the first prize in the Innovation for Physically Challenged Award Category.

SoE clinched several prizes at the Tan Kah Kee Young Inventors’ Award 2006 with its creative and cost-effective inventions. The winning inventions included an Ankle Foot Othosis that helps cerebral palsy patients to work normally and an Eyebrow Control System, which helps improve the lives of paralysed or stroke patients. The Eyebrow Control System helps these patients operate electronic devices, such as televisions and lights, and also sounds an alarm to attract the attention of their caregivers.

Five Facilities Management for Business students won approval from the Land Transport Authority of Singapore (LTA) for their Hazard Identification System. The WiFi-enabled system tracks and monitors the physically handicapped as they move about a Mass Rapid Transit station, and sounds a warning if they are too close to potential hazards or obstacles. The LTA has earmarked this project for wider adoption and commercialisation.

At the 26th All Japan Micromouse Competition in November 2005, NP continued its winning tradition. Not only did ECE students Tan Zhi Ping and Liu Qi top the microclipper category, their robot also set a new record by flipping 26 out of 32 cans.

FACILITIES & STAFF

At Ngee Ann Polytechnic, students can look forward to a conducive learning environment. New equipment and software programmes are introduced periodically in tandem with the latest technological developments and industry trends.

SoE boasts some of the latest technology centres, laboratories and computing facilities. These include:

- Alpha Centre
- Assistive Technology Centre
- Automation & Integrated System Centre
- Biomedical Engineering Centre
- Bluetooth Laboratory
- Design and Rapid Prototyping Centre
- Digital Signal Processing Centre
- Energy & Environment Centre
- Facility Management Centre
- Frontline | AeroScout – Enterprise Visibility Solution Centre
- High Voltage Training Centre
- Instrumentation & Control Centre
- Internetworking Technology Laboratory
- Marine Technology Laboratory
- Microelectronics Design and Application Laboratory
- Photonics Laboratory
- Power Quality Centre
- Quality Control Calibration Laboratory
- Radio Frequency Laboratory
- Solar Technology Centre

The School also has a pool of dedicated and highly qualified professionals with relevant post-graduate degrees and working experience in the respective engineering fields.

SoE lecturers attend seminars regularly and engage in industrial consultancy projects to keep up with the latest developments, tools and techniques used in the business and engineering industries. Such activities ensure that the curricula remain up-to-date and relevant to the industry.
COLLABORATIONS

SoE has forged numerous collaborations with various industrial and educational partners. These partnerships provide opportunities for joint research and consultancy projects, skills and technology transfer, staff training, as well as attachments and placements for final-year students.

Centres of Innovation

In September 2005, Ngee Ann Polytechnic and AEM-Evertech Holdings Ltd (AEM), a Singapore public-listed company and a major player in the semiconductor manufacturing industry, signed a Memorandum of Understanding (MOU) to establish the NP-AEM Centre of Innovation (NACOI). NACOI links the technical capabilities in Ngee Ann with the industrial and production expertise and resources of AEM and their customers and suppliers, to develop breakthrough technologies in photonics, imaging systems and microcircuit design and packaging. SoE staff and students, together with researchers from other tertiary institutions, work alongside their AEM counterparts to facilitate technology transfer between academia and industry. The MOU also facilitates attachments for SoE staff and students with AEM-Evertech. The organisations will also actively exchange professional expertise and jointly organise seminars, conferences and workshops.

In November 2006, SoE collaborated with SPRING Singapore to set up new Centres of Innovation (COIs) in environmental and water technology (EWT) and marine and offshore technology (MOT). Worth a total of $13 million, the two COIs will leverage on a formidable combination of strong industry ties, rich expertise in engineering, cutting-edge facilities, and multidisciplinary project teams. Apart from functioning as one-stop technology centres in developing commercially-viable technologies and products, the COIs will also improve the efficiency, productivity and safety operations in the MOT and EWT sectors. They will also develop designs and engineering solutions that meet the specific requirements of companies.

Exploit Technologies and A*Star

SoE is collaborating with Exploit Technologies Pte Ltd and A*Star research institutes (RIs) to research, develop and commercialise A*Star technologies. At a Master Collaboration Agreement Signing Ceremony in August 2006, the polytechnic and Exploit Technologies inked agreements to work on new products and applications based on the technological innovations in three areas – a “lab-on-a-chip” water testing mechanism, a personal health status monitoring system and a mini-fuel cell.

National Instruments

In July 2006, SoE and National Instruments signed a $2-million Memorandum of Understanding that grants the polytechnic the use of up to 200 licences of the global virtual instrumentation company’s LabVIEW version 8. Engineering students will benefit from hands-on training with this leading programming language, which is widely used in various sectors such as energy, manufacturing, pharmaceuticals and aviation.

Smart Bed

The Smart Bed, the product of a collaboration between SoE, Alexandra Hospital and Plenitum Care (S) Pte Ltd, was developed by a group of SoE students and staff based on input and feedback from the hospital’s doctors, nurses and operations staff. It is designed for weak elderly patients and those who require complete bed rest. The Smart Bed’s sensor system can be enabled for patients classified under “fall-precaution” and disabled for complete-rest-in-bed patients. Fall-precaution patients getting off their bed will trigger a threefold alert system – a buzzer at the nurses’ station, a light along the corridor, and an SMS to the duty nurse’s mobile phone. This ingenious sensor system allows staff to monitor patients’ movements and quickly attend to them, thus preventing any falls.

Frontline i AeroScout – Enterprise Visibility Solution Centre

In September 2007, SoE and Frontline Technologies Pte Ltd signed a Memorandum of Understanding to jointly set up an Enterprise Visibility Solution Centre for the development of real-time location system (RTLS) utilising radio frequency identification (RFID) technology in Asia. The Centre will be one of the pioneer research and application laboratories in Singapore to test and develop Active RFID solutions. It will also serve as a demonstration laboratory for customers to test if the proposed RFID solution works in a simulated working environment. Additionally, the Centre will serve as a test-bed for third-party product and application solutions and integrate these for commercial uses. The Centre will provide NP’s final-year engineering students practical experience in developing and testing RFID solutions, which may eventually be implemented in the commercial market.
ENGINEERING CATEGORY

ADVANCED ENGINEERING MATHEMATICS CLUSTER
Designed in collaboration with the Department of Electrical and Computer Engineering, National University of Singapore (NUS), this cluster is designed for engineering students who wish to strengthen their mathematical foundation for university studies. The syllabus is based on the first-year engineering mathematics curricula of NUS. The cluster consists of three sequential modules and two elective modules. After gaining direct entry to the second-year university studies in engineering courses, they will be able to use mathematics effectively.

Algebra, Trigonometry and Analytic Geometry
Topics included are fundamentals of Algebra, Trigonometry, Plane Analytic Geometry and Complex Numbers.

Calculus I
Topics included are Functions, Differentiation, Integration and Vector Algebra. Students will be tasked to reflect their learning experiences on the applications of calculus.

Calculus II
Students will learn Sequences and Series, Calculus on Functions of Several Variables, Vector Calculus and Partial Differential Equations. Emphasis will be placed on the mathematical solving skills.

Differential Equations and Applications (Elective)
Students will learn First-order Differential Equations, Second-order Differential Equations, and System of Linear Differential Equations in this module. Emphasis will be placed on the techniques of solving engineering applications.

Matrix and Laplace Transform (Elective)
Students will learn Matrix Algebra, Matrix Analysis and Laplace Transform in this module. Emphasis will be placed on the solving techniques on engineering applications.

AEROSPACE DESIGN CLUSTER
This cluster equips students with strong CAD/CAM knowledge and develops their technical competency in engineering design and simulation, building up their capability for a design career, especially in aerospace engineering.

Aerospace CAD
A practice-oriented module designed to give students an appreciation of Computer Aided Design and their roles in engineering design. This module covers drafting concepts and techniques for the development of a product model during the design process.

AEROSPACE ELECTRONICS CLUSTER
This cluster is designed for students interested in the aerospace industry. The three aerospace fundamental modules are Human Factors, Fundamentals of Aerospace Technology, and Avionics Systems. The Digital Communication module provides the theory and operation of digital communications used in aircraft communication and navigation systems.

Human Factors
This module introduces students to human factors and how they affect performance at work. Topics include social psychology, physical environment, types of tasks, communication and human errors, with special reference to the aerospace industry.

Fundamentals of Aerospace Technology
This activity-based module introduces students to the principles of flight, and traces the historical development of aerospace technology, its impact on society and the economics, safety and environmental issues.

Avionics Systems
This module provides students with an appreciation of aircraft electronic systems. It includes topics such as cockpit instruments; systems for navigation, communication, surveillance and control, and various essential electronics in the modern airliner.

Digital Communications
This module provides the foundation for understanding principles in data communications. Students will acquire an understanding of and be able to apply key concepts and processes associated with digital and data transmission of information and transmission media.
APPLIED PHYSICS CLUSTER
Designed in collaboration with the Department of Electrical and Computer Engineering, National University of Singapore (NUS), this cluster helps to prepare students for university-level physics modules. The syllabus is based on the first-year engineering and science curricula of NUS. The first module brings students on par with ‘A’ Level Physics students. The next two modules bridge the gap with university-level physics modules in the engineering and sciences degrees.

Foundational Physics
This module covers units and measurement, mechanics, thermodynamics and oscillation at the fundamental level.

Classical Physics
This module covers the remaining topics of classical physics at the undergraduate level. The topics are dynamics, gravitation, thermodynamics and electromagnetism. For the last topic, the focus is more on the theoretical fundamentals, as opposed to the applied aspect found in the typical diploma-level module.

Modern Physics
This module covers modern physical concepts, beginning with atomic structure. Next the quantum concept and wave-particle duality is introduced, followed by nuclear physics and radioactivity. Finally, the study of the applications of modern physics lets the student realise the practical usefulness of it.

APPLIED TECHNOLOGY CLUSTER
This cluster’s modules are offered as standalone electives for students who are interested in exploring different realms of technology and engineering knowledge.

Project Management
This module provides students with a good understanding of Project Management techniques such as Project Planning, Scheduling and Controlling using network analysis techniques such as Critical Path Method, Gantt Charts, and Program Evaluation & Review Technique.

Applied Design Innovation
This module covers the basic requirements of a good design that make a product functional and sell well in a competitive market. Topics include history of design, design presentation, safety and standards, model making and prototype development, aesthetics and colour theory, ergonomics, marketing and entrepreneurship, and introduction to rapid prototyping.

Applied Micro Electro Mechanical Systems
This module provides an overview of the historical development of micro electro mechanical systems (MEMS), MEMS technology, basic microsystems working principles, MEMS materials, microsystems design, wafer fabrication, and processing techniques.

Applied Automation & Robotics
This module covers basic computer control, interfacing techniques and microcontroller operation. Major topics include basic numbering system, micro controller application and programming, webpage authoring, robot programming, motor control and Web-based equipment control.

Applied Biomedical Engineering
This module provides a strong foundation for biomedical engineering and applications. It introduces students to the applications of engineering statics and dynamics to perform simple force analyses of the musculoskeletal system. It also provides an appreciation of kinematics and kinetics of human motion. The module also introduces students to the role of an engineer in rehabilitation under different medical conditions.

Robotics & Machine Vision
This module aims to bring students to a level of competency whereby they will be able to critically appraise the capabilities of robots as typical mechatronic systems. The module also enables students to acquire knowledge of the image processing and analysis techniques used in machine vision.

Data Communication Techniques
This module equips students with some key concepts and principles of modern data communication systems like the satellite and fibre optic networks. The students will also learn the operation of physical and wireless LAN in detail.

BIOMEDICAL ENGINEERING CLUSTER
This cluster of modules prepares students for the exciting field of biomedical engineering. The Foundational Chemistry and Further Engineering Mathematics modules aim to bridge the gap with University mathematics and science modules in the engineering and sciences courses. The Biomedical Signal Processing and Medical Imaging Technology modules seek to introduce students to the exciting and promising field of Biomedical Engineering.

Foundational Chemistry
Students are introduced to the concepts of inorganic, physical and organic chemistry. Students will gain a working knowledge of the atomic nature of matter, the periodic table and law, the chemical bonding between particles, the mole concept, balancing of chemical equations, the different types of chemical reactions, spontaneous and non-spontaneous processes, the role of catalysts, and structure of properties of various organic compounds.

Further Engineering Mathematics
Students are introduced to various types of differential equations and their solutions, as well as their applications in science and engineering. Students will gain a working knowledge of using differential equations in modelling physical and engineering systems. They will develop important skills to obtain the solution of a differential equation by applying analytic, numerical, or graphical techniques.
Biomedical Signal Processing
This module gives an introduction to biomedical signal processing and analysis. Students are introduced to fundamental signal processing techniques to analyse and process signals that originate from biological sources: such as ECGs, EMGs, EEGs, blood pressure signals; and to integrate the information with physiological knowledge, useful for physiologic investigation and medical diagnosis and processing.

Medical Imaging Technology
This module aims to expose students to the field of Biomedical Engineering through an understanding and appreciation of medical imaging technology and equipment. Students will be taught the different types of medical imaging principles and their application in diagnostic therapy. Image processing theory and concepts are introduced before the various imaging technologies are taught. Specific areas of radiology include topics such as ultrasound imaging, X-ray and Magnetic Resonance Imaging are taught.

Operating Systems & Networking
This module covers fundamental operating system principles and networking concepts. UNIX/Linux are used as the primary operating system reference model for this module. Network Management and UNIX/Linux networking are included, together with an emphasis on writing basic application programs. This module will prepare students with suitable background for working in system administration, Local Area Network (LAN) and the internetworking environments.

Computer Control & Automation
In this module, students will learn how to design and implement the industrial automation of sequential processes using programmable controllers. The module also provides the knowledge necessary to perform the regulation and control of continuous processes using auto-tuning controllers. Other aspects covered include artificial neural networks, fuzzy logic and the use of computer control software for ladder symbol programming.

Internet Technology
The module aims to provide the concept of the Web operations and also the tools used for developing Web-based applications. Students will learn the basics of HTML, Java language, JSP, JDBC and JavaScript so that they are able to develop multiple-tier Web-based database applications.

Digital Audio & Video Technology
This module introduces students to digital audio and video fundamentals and compression standards, together with their applications in multimedia services and broadcasting technology. It also covers the basics of Digital Audio Broadcasting (DAB) and Digital Video Broadcasting (DVB) standards and their capabilities as compared to the current analogue broadcasting systems.

Digital Communication Systems & Techniques
This module introduces students to the fundamental techniques for implementing a reliable and error-free communication system. Typical performance measuring the probability of bit error are evaluated for different modulation techniques. The concepts of forward error correction are also covered to emphasise typical methods to correct and detect errors in an incoming digital sequence.

Communication Systems & Applications
This module provides the opportunity for students to explore and recognise the developments that are currently used in communication systems and wireless technology. Students will acquire an understanding of wireless technology and be able to apply key concepts and processes associated with transmission fundamentals, high frequency transmission media and wave propagation. They will then be able to appreciate the application of RF technology to radar systems, satellite and mobile communication systems, fibre optical communication and the increasingly popular Bluetooth technology.

DECISION MANAGEMENT FOR QUALITY
This cluster is aimed at helping students to develop the relevant knowledge and skills for decision-making in the area of Quality Management. It seeks to equip students with the basic knowledge and skills through the four modules, namely, Customer Relationship Management, Design of Experiment, Metrology & Calibration and E-commerce.

Customer Relationship Management
The aim of the module is to equip students with basic knowledge of strategies in relation to maintaining a high standard of customer satisfaction and relationship in an organisation. The module also helps students to understand the buying behaviour of the consumers, and factors influencing this buying process. The module covers the concepts and techniques of the strategy, management, process, people and continual improvement in implementing a quality system to provide excellent customer service, and the technology and interfaces that affect the buying behaviour of a consumer.

Design of Experiments
Students will cover the important aspects of experimental design techniques that enable them to plan and conduct a real industrial experiment. The experiment could be process characterisation, process optimisation, or product design. Students will learn how to perform the statistical analysis of experimental data and to make objective conclusions.

Metrology & Calibration
Students will study the theories behind metrology and calibration. Emphasis is placed on various aspects of measurements such as lengths, angles and geometric properties. Other topics include sources of errors, traceability, repeatability and accuracy. In addition to lectures, practical sessions are conducted to enhance the learning experience in relevant areas using computerised equipment.

E-commerce
This module aims to provide students a guide on how organisations can use the Internet to support their marketing activities, and covers all aspects of the subject, from environmental analysis to strategy development and implementation. This module will cover Internet marketing strategy, the Internet marketing mix, relationship marketing using the Internet, delivering online service quality, interactive marketing communications, business-to-consumer Internet marketing and business-to-business Internet marketing.

ELECTIVE MODULES

SCHOOL OF ENGINEERING

Biomedical Signal Processing
This module gives an introduction to biomedical signal processing and analysis. Students are introduced to fundamental signal processing techniques to analyse and process signals that originate from biological sources: such as ECGs, EMGs, EEGs, blood pressure signals; and to integrate the information with physiological knowledge, useful for physiologic investigation and medical diagnosis and processing.

Medical Imaging Technology
This module aims to expose students to the field of Biomedical Engineering through an understanding and appreciation of medical imaging technology and equipment. Students will be taught the different types of medical imaging principles and their application in diagnostic therapy. Image processing theory and concepts are introduced before the various imaging technologies are taught. Specific areas of radiology include topics such as ultrasound imaging, X-ray and Magnetic Resonance Imaging are taught.

Computer & Communication Systems Cluster
This cluster encompasses a number of module electives that will provide technical depth and breadth in computer and communication engineering for a well-rounded education. It prepares the students for careers or advanced study in the computer and telecommunication technology.

Operating Systems & Networking
This module covers fundamental operating system principles and networking concepts. UNIX/Linux are used as the primary operating system reference model for this module. Network Management and UNIX/Linux networking are included, together with an emphasis on writing basic application programs. This module will prepare students with suitable background for working in system administration, Local Area Network (LAN) and the internetworking environments.

Computer Control & Automation
In this module, students will learn how to design and implement the industrial automation of sequential processes using programmable controllers. The module also provides the knowledge necessary to perform the regulation and control of continuous processes using auto-tuning controllers. Other aspects covered include artificial neural networks, fuzzy logic and the use of computer control software for ladder symbol programming.

Internet Technology
The module aims to provide the concept of the Web operations and also the tools used for developing Web-based applications. Students will learn the basics of HTML, Java language, JSP, JDBC and JavaScript so that they are able to develop multiple-tier Web-based database applications.

Digital Audio & Video Technology
This module introduces students to digital audio and video fundamentals and compression standards, together with their applications in multimedia services and broadcasting technology. It also covers the basics of Digital Audio Broadcasting (DAB) and Digital Video Broadcasting (DVB) standards and their capabilities as compared to the current analogue broadcasting systems.

Digital Communication Systems & Techniques
This module introduces students to the fundamental techniques for implementing a reliable and error-free communication system. Typical performance measuring the probability of bit error are evaluated for different modulation techniques. The concepts of forward error correction are also covered to emphasise typical methods to correct and detect errors in an incoming digital sequence.

Communication Systems & Applications
This module provides the opportunity for students to explore and recognise the developments that are currently used in communication systems and wireless technology. Students will acquire an understanding of wireless technology and be able to apply key concepts and processes associated with transmission fundamentals, high frequency transmission media and wave propagation. They will then be able to appreciate the application of RF technology to radar systems, satellite and mobile communication systems, fibre optical communication and the increasingly popular Bluetooth technology.

DECISION MANAGEMENT FOR QUALITY
This cluster is aimed at helping students to develop the relevant knowledge and skills for decision-making in the area of Quality Management. It seeks to equip students with the basic knowledge and skills through the four modules, namely, Customer Relationship Management, Design of Experiment, Metrology & Calibration and E-commerce.

Customer Relationship Management
The aim of the module is to equip students with basic knowledge of strategies in relation to maintaining a high standard of customer satisfaction and relationship in an organisation. The module also helps students to understand the buying behaviour of the consumers, and factors influencing this buying process. The module covers the concepts and techniques of the strategy, management, process, people and continual improvement in implementing a quality system to provide excellent customer service, and the technology and interfaces that affect the buying behaviour of a consumer.

Design of Experiments
Students will cover the important aspects of experimental design techniques that enable them to plan and conduct a real industrial experiment. The experiment could be process characterisation, process optimisation, or product design. Students will learn how to perform the statistical analysis of experimental data and to make objective conclusions.

Metrology & Calibration
Students will study the theories behind metrology and calibration. Emphasis is placed on various aspects of measurements such as lengths, angles and geometric properties. Other topics include sources of errors, traceability, repeatability and accuracy. In addition to lectures, practical sessions are conducted to enhance the learning experience in relevant areas using computerised equipment.

E-commerce
This module aims to provide students a guide on how organisations can use the Internet to support their marketing activities, and covers all aspects of the subject, from environmental analysis to strategy development and implementation. This module will cover Internet marketing strategy, the Internet marketing mix, relationship marketing using the Internet, delivering online service quality, interactive marketing communications, business-to-consumer Internet marketing and business-to-business Internet marketing.
Electrical Calibration & Measurement
Students are introduced to the theories and practices in metrology and calibrations. This includes precision electrical measurements and the process of selecting and setting up instruments as well as precautionary measures to obtain the best possible measurement results. Students will also learn about the characteristics of instruments, such as the digital multimeter, counter and oscilloscope.

Lighting Technology & Control
This module provides a broad knowledge of lighting in commercial, industrial, residential and theatrical productions. Students will gain a comprehensive overview of the science of lighting design as well as the technical knowledge of lighting in different environments.

Fundamentals of Power Quality
This module introduces the various technical and economic issues of power quality. Topics covered include power interruptions, voltage sags, transient over-voltage, voltage regulation, harmonics, filtering and common grounding problems. Students will also learn about the impact of power quality on sensitive equipment, international standards on power quality, power quality monitoring, and the methods used to mitigate power quality problems.

Power Electronics & Applications
This module aims to provide a broad understanding of the various power conversion circuits and their industrial applications. Students will deal mainly with the applications of power semiconductor devices for the control and conversion of electric power. The principles of operation and analysis of power conversion circuits such as AC to DC converters, DC to DC converters, DC to AC converters, and AC power controllers will be covered together with their applications.

Industrial Control Cluster
This cluster equips students with knowledge and practical training in the areas of electrical control wiring systems. Students will also acquire skills in programming and designing Programmable Logic Controller for industrial applications. It aims to train students to compete in the World Skills Singapore Competition (Industrial Control Category).

Electrical Control and Wiring
This module aims to provide a broad knowledge of electrical control wiring systems and the installation of electrical equipment. Students will learn to read and interpret the circuit diagrams and wiring of control panels. The training will include mounting and wiring of control panels, PVC conduits, flexible conduits, connectors, termination and numbering of cables, junction boxes, PLC and other electrical components according to layout diagram.

Advanced Programming for Programmable Logic Controller
Students will learn to program and design Programmable Logic Controller (PLC) and its industrial applications. Programming of PLC on projects involve digital I/O, analogue I/O, timers, counters, move, compare, internal register. Students will also learn how to simulate, test the PLC program, and interface of the PLC with inverter, touch screen, sensors, switches, indicating lights, motors starters and other I/O devices.

Fundamentals of Industrial Electronics
This module introduces the general concept of industrial electronics. Students will learn how to implement simple electronics circuits using electronics component parameters. Topics covered include use of electronics components, frequency response and device characteristics. Practical skills such as electronic circuit assembly and functionality tests are essential in this module.

Industrial Electronics Technology
This module builds on the fundamentals of industrial electronics. It covers the analysis and design of analogue and digital circuits. Topics include analogue to digital conversion circuits, combinational logic, sequential circuits, and special functions circuits. Practical skills cover the tools used to simulate and design these circuits.

Advanced Industrial Electronics
This module builds on Industrial Electronics Technology elective module. Students will learn how to analyse transient circuit response and simulations. Topics covered include small and large signals analysis of linear amplifiers, and circuit design using high power devices such as BJTs, MOSFETs, UJT, SCR and TRIAC for industrial applications. Practical skills cover design and prototype techniques, advanced test and measurements, electronic troubleshooting, and fault rectification techniques.

Information Technology Cluster
This cluster comprises modules which provide exposure to the computing system. The modules cover the installation and administration of different operating systems. Students will obtain knowledge in this exciting area of technology that will enable them to pursue employment opportunities in the infocomm industry.

Workstation Hardware & Software
This module focuses on the functionality of hardware and software components. Through hands-on sessions, students learn how to assemble and configure a computer, install operating systems and application software, and troubleshoot hardware and software problems. They will also be introduced to basic networking concepts, including how to set up a home office network.

Windows System Administration
This course aims to provide students with the knowledge and skills that are required to manage accounts and resources, maintain server resources, monitor server performance, and safeguard data in a Microsoft Windows Server 2003 environment. It also provides students with the knowledge and skills to design a Microsoft Active Directory service and network infrastructure for a Microsoft Windows Server 2003 environment.
INTERNATIONAL FREIGHT FORWARDING & E-LOGISTICS CLUSTER
This cluster aims at providing a general but practical appreciation of the freight forwarding operations. Students will be familiarised with the modern transportation systems, documentation, and international trade and customs requirements in the transportation of goods overseas. It also includes an overview of the electronic trade management systems that enable the exchange and sharing of information within the Singapore trade and logistics community.

Electronic Commerce
This module provides the understanding of the role of Electronic Commerce (e-Commerce) in applications, specifically in the logistics industry. The scope of study includes e-Supply Chain Management, EC Order Fulfilment, e-Procurement, e-Customer Relationship Management. It covers planning solutions such as e-Commerce, Collaborative Planning, Forecasting, and Replenishment.

Introduction to Freight Forwarding Management
Students are equipped with the knowledge of air and sea freight forwarding from a management perspective. Topics covered include industry regulations and association, aircrafts, air cargo import and export, transhipment procedures, rates and charges, carriers and port clearance procedures, types of ships, international convention and regimes, location of major seaports, and operation flows.

International Trade Management
Students will understand international freight forwarding and acquire managerial skills in managing freight forwarding operations. Topics include incoterms, majors international trade products relating to freight forwarding, transport documents and other documents used in international trade, overview of shipping documents declarations and international regulatory bodies and regulations.

Cold Chain
This module discusses local and international regulatory bodies; international handling; storage practices and standards for different pharmaceutical and food products. Students will be provided with the tools for implementation and monitoring of cold chain quality. Hazard Analysis and Critical Control Point and their implementation in cold chain will be discussed.

MECHANICAL TECHNOLOGY CLUSTER
This cluster equips students with a strong foundation in mechanics modules, preparing them for further study in engineering programmes, particularly for Product Design & Innovation students who wish to gain exemption in degree programmes in mechanical engineering.

Applied Engineering Mathematics
This module provides students with further knowledge and skills in mathematics required to solve engineering problems. Topics include integration with applications, differential equations, Laplace Transform, and probability and statistics.

Applied Engineering Mechanics
This module equips students with the necessary skills to analyse problems of rigid bodies in motion. Topics include kinematics of linear and rotational motion, relative motion, kinetics of linear and rotational motion, work energy method for linear and rotational motion, and power as well as efficiency and impulse momentum method for linear and rotational motion.

Applied Mechanics of Materials
This module studies the effects of external forces and temperature changes on solids in the form of stresses and deformations. Students apply concepts of stresses, stress-strain diagrams, and Hooke’s Law in analysing and solving engineering problems. Topics include stresses and strains, torsion, shear force and bending moment, beam stresses, combined stresses and experimental stress analysis.

Applied ThermoFluids
This module covers the fundamental concepts of thermodynamics and fluid mechanics, and their applications in products and systems. Topics include thermodynamic system concepts, the laws of thermodynamics, properties of working fluids, non-flow and steady flow processes with steam and perfect gas, basic heat transfer, principles of fluid mechanics, hydrostatic forces and buoyancy, energies of liquids in motion, and losses of energy in pipelines.

MICROELECTRONICS CLUSTER
This cluster comprises modules which will provide exposure to the principles of microelectronics design, manufacturing and assembly. Students will gain an appreciation of the range of activities and disciplines that are employed in the creation of integrated circuits. Students will obtain a basic foundation in this exciting area of technology that will enable them to pursue employment opportunities in the industry.

Microchip Technology
This module introduces students to various Integrated Circuit (IC) technologies. It provides students with basic concepts of Metal-Oxide-Semiconductor (MOS) digital integrated circuit design. At the end of the module, students will be able to design and layout simple MOS digital ICs both in theory and in practice. Students will also learn to design circuits using Very High Speed Integrated Circuit Hardware Description Language (VHDL).

IC Layout
The aim of this module is to equip students with basic analogue and digital Integrated Circuit (IC) layout skills. Students will gain an insight into IC layout design methodology and use computer-aided design tools for layout editing and verification.
Microelectronic Manufacturing & Assembly
This module aims to provide students with knowledge of the planning and control aspects of process technology to prepare them for careers in the manufacturing industry. The course also covers basic Integrated Circuit (IC) and surface-mounted board assembly processes, sensor technology and maintenance engineering.

NETWORK SYSTEMS & SECURITY CLUSTER
This cluster offers modules for students who are interested to work in the networking industry. Students will be equipped with knowledge in remote access technologies and apply their knowledge acquired in designing a network. They will also learn how to optimise a converged network comprising of voice, wireless and security applications.

Internetworking Project Design
This module assesses students’ understanding of the internetworking knowledge acquired in the Internetworking 1, 2, 3 and 4 modules, and their ability to apply this knowledge to a given example. The example involves a school that is implementing a LAN with WAN access that provides data connectivity with other schools.

Remote Access Networks
This module introduces the techniques and technologies for enabling wide-area networks using remote access techniques. Students will learn to identify solutions to remote access needs, enable on-demand connections to the central site by configuring asynchronous modem connections, enhance on-demand connectivity using ISDN and dial-on demand technologies, and manage permanent connections with frame relay. The module also provides the student with practical information to understand important concepts related to network address translation, broadband access, virtual private networks, enabling information to understand important concepts related to network infrastructure, and manage permanent connections with frame relay. The module also provides the student with practical information to understand important concepts related to network infrastructure, and manage permanent connections with frame relay.

Optimising Converged Networks
This module describes the converged network requirements within conceptual network models. It provides the student with important knowledge and advanced hands-on skills in optimising and providing effective quality of service techniques for converged networks that support voice, wireless and security applications.

STAGE MANAGEMENT AND TECHNOLOGY CLUSTER
This cluster is aimed at providing students with knowledge related to Technical Theatre; stage technology, which includes lighting, props, theatre settings and layout; and management issues related to show/drama/concert productions. It also seeks to equip students with basic knowledge in managing supporting technology of shows such as sound, light and video controls. In addition, students can have practical sessions on creating, editing and mixing music to produce sound effects such as surround, spatial and other special effects.

Introduction to Technical Theatre
The module will provide students with brief knowledge in these topics – lighting, makeup, production, scene setting, sound for stage, theatrical property and introduction to costume. Students will study the effect of lighting for theatre productions the size, intensity, shape, and colour of light for a given scene. They also learn the basics that accentuates an actor’s features. The production process will be discussed briefly. Scenery, which includes set construction, scenic painting, soft goods (drapes and stage curtains) is described, as well as special effects and sound, such as musical underscoring, vocal and instrument mixing as well as theatrical sound effects. Finally, the module will briefly study theatrical property, or props, which includes furnishings, set dressings, hand props, and an actor’s costume props.

Introduction to Live Performing Arts
The performing arts include theatre, motion pictures, drama, comedy, music, dance, opera, magic and the marching arts. In this module, students will learn to identify, analyse and appreciate the different types of performing arts. Studies include staging, ambience, audio reinforcement, genre of music, costumes, background and storyline.

Stage Management
This workshop-based module enables students to learn the roles and responsibilities of the stage manager. Students learn the techniques of successfully managing the numerous aspects of a production, both on stage and backstage, in the pre-rehearsal, rehearsal, performance, and post-performance phases. This module includes the planning of a master calendar and prompt script; aspects of coordination with production designers; using light, sound and costume plots effectively; coordinating the efforts of the cast to stay on scripts; performing checks on safety, legal issues, lighting and sets; and the smooth coordination of technical and dress rehearsals.

Audio Effect Processing
This workshop-based module offers intensive hands-on sessions where students learn to create, edit and mix music and special sound effects onto multiple audio tracks. It also provides theoretical and practical training on digital audio effects techniques that convert 2-channel stereo audio track to 5.1 surround-sound tracks, the professional use of AC-3, redirection to speakers through digital Dolby and surround sound decoders, and spatial enhancement in theatre and audio entertainment application.

TELECOMMUNICATION DISTRIBUTION TECHNOLOGY CLUSTER
This cluster aims at providing students the knowledge and skills in the area of Structured Cabling System, and trains students to compete in the World Skills Singapore-Telecommunication Distribution Technology Category. Students will be trained in the connection and installation, the performance testing as well as in the design of the structured cabling system.

Structured Cabling System 1 – Connectorisation and Installation
Students will learn the latest installation and termination techniques for networking and structured cabling systems. This course also includes an overview of structured cabling systems, an in-depth review of the ANSI/TIA/EIA and ISO/IEC industry standards, and a discussion and hands-on practicum on the rough-in, installation, management, and termination of shielded and unshielded twisted pair and optical fibre cabling systems. About 85% of this course is hands-on and is designed using a systems approach instruction method whereby the students will build a rack; install an outlet; and instal, terminate and test a cabling link between the two.
Structured Cabling System 2 – Testing and Trouble-Shooting Techniques for Structured Cabling System
Students will learn how to certify the performance of installed cable plants and learn how to troubleshoot if they do not perform as expected. Students will obtain the experience necessary to certify and document twisted pair and optical fibre cable plants based on established industry standards. The standards studied in the course include ANSI/TIA/EIA-568B, TSB-67, ANSI/EIA/TIA-526-14A and ANSI/TIA/EIA-526-7.

Structured Cabling System 3 – Design for Structured Cabling System
Students will be involved in the design and installation of structured cabling systems. Students will progress through a step-by-step process, from the initial design analysis to the final project presentation. There is an emphasis on the design parameters and guidelines of the TIA/EIA/ISO standards, and the decisions that the designer has to make regarding network platforms and technologies, cabling architectures, and media selection. Students will design several different premises cabling systems based on actual projects.

WORKPLACE SAFETY & HEALTH CLUSTER
This cluster equips students with knowledge and understanding of the basic elements of engineering controls for minimising, preventing and managing occupational health and safety risks in workplace of emerging industrial sectors. The programme develops their capabilities in practical aspects of engineering practices for control of Workplace Safety & Health issues, and prepares them for a career as industrial safety officers.

Workplace Safety
This module equips students with the fundamental knowledge in workplace safety and health. Topics include basic elements of engineering and the interaction of machinery, equipment and technology for health and safety controls, industrial safety and hazards, accident investigation methodology, and safety inspection and planning.

Workplace Health
This module equips students with knowledge in occupational health. Topics include identification of industrial hazards and their prevention, implications of industrial noise, chemical hazards, lighting, thermal environment, radiation, confined space, general ventilation, occupational diseases and occupational health management.

Workplace Safety Management & Risk Control
This module introduces students to safety management, WSH policy, worker’s compensation act, hazard control, safety audit, risk analysis, safety performance analysis, accident costing, safety education, training and communication.

ECOLOGICAL & ENVIRONMENTAL MANAGEMENT CLUSTER
This cluster is designed for students who wish to equip themselves with knowledge outside their core fields, such as in economics and finance. The cluster consists of three core modules, which are Economics, Engineering Economics, and Business Finance.

Economics
This module gives an overall view of microeconomics and macroeconomics. It focuses on the microeconomics theory of demand and supply, resource allocation, market demand, production and cost theory, price and output of firms under conditions of perfect and imperfect competition. The section on macroeconomics will provide students with an understanding of the workings of an economy, the circular flow of income in an economy and the measurement of national income and national output. Macroeconomics issues such as economic growth, unemployment, and inflation will be analysed.

Engineering Economics
Engineering Economics is concerned with the application of technical and economic analysis, with the goal of deciding which course of action best meets the technical performance criteria and uses scarce capital in a prudent manner. This module provides students with a sound understanding of the principles of Engineering Economics, its basic concepts, methodology and applications of such knowledge to practical situations.

Business Finance
This module aims to provide knowledge of financial principles, concepts and applications required for students who enter the business world today. The module will equip students with the basic knowledge of economic factors affecting finance, financial statements and analysis, cost of capital, investment decisions, and long-term and short-term financial decisions. Students will be trained to analyse a company’s financial information, evaluate the viability of a project with capital budgeting techniques, and calculate the cost of capital.

ECOLOGICAL & ENVIRONMENTAL MANAGEMENT CLUSTER
This cluster is designed for students who wish to equip themselves with knowledge outside their core fields, such as in economics and finance. The cluster consists of three core modules, which are Economics, Engineering Economics, and Business Finance.

Economics
This module gives an overall view of microeconomics and macroeconomics. It focuses on the microeconomics theory of demand and supply, resource allocation, market demand, production and cost theory, price and output of firms under conditions of perfect and imperfect competition. The section on macroeconomics will provide students with an understanding of the workings of an economy, the circular flow of income in an economy and the measurement of national income and national output. Macroeconomics issues such as economic growth, unemployment, and inflation will be analysed.

Engineering Economics
Engineering Economics is concerned with the application of technical and economic analysis, with the goal of deciding which course of action best meets the technical performance criteria and uses scarce capital in a prudent manner. This module provides students with a sound understanding of the principles of Engineering Economics, its basic concepts, methodology and applications of such knowledge to practical situations.

Business Finance
This module aims to provide knowledge of financial principles, concepts and applications required for students who enter the business world today. The module will equip students with the basic knowledge of economic factors affecting finance, financial statements and analysis, cost of capital, investment decisions, and long-term and short-term financial decisions. Students will be trained to analyse a company’s financial information, evaluate the viability of a project with capital budgeting techniques, and calculate the cost of capital.

GREEN DEVELOPMENT CLUSTER
This cluster is aimed at helping students to understand the different issues related to our environment as we increase the quality of our lives. It helps the students to examine the challenge ahead of us through the six modules, namely, Ecotourism, Garden Design & Park Management, Sustainable Design & Development, Water Demand Management, Solid & Hazardous Waste Management, and Water & Marine Pollution.

Ecotourism
Ecotourism is considered the fastest growing market in the tourism industry. This module will help students to formulate and develop ecotourism programmes in order to enable people to enjoy and learn about the natural, historical and cultural characteristics of unique environments while preserving the integrity of the sites as well as meeting tougher environmental requirements.
Gardens Design & Park Management
The module aims to give students an overview of the field of garden design and park management, and provide a foundation for further studies and application in landscape design and management. Students will be trained in the areas of garden theory, the design process, design principles, landscape construction, ecological landscape design principles, the history and functions of parks, and the various facets of park management, including park typology, park users and visitor management as well as park maintenance.

Sustainable Design & Development
There is a growing universal inpetus to increase the quality of our lives as well as to preserve the environment for the present and future. This module covers sustainability issues relating to the development of our built environment, which invariably includes buildings and infrastructure. Understanding the present challenges of the industry provides the backdrop for the issues to be addressed. Actions for sustainable designs and development of our buildings are then discussed. Case studies of exemplary buildings are included.

Water Demand Management
Water demand in urban areas is on the rise due to population growth, change in lifestyle and the effect of climate change. One of the ways to meet the increasing demand is to manage the consumptive demand. This would avoid the need to develop new water resources. Water demand management involves the measures taken by the authority to achieve efficient water use by all members of the community. In this module, students will be taught various water demand measures such as effective pricing, leakage detection, community education, water-saving devices, and use of reclaimed water.

Solid & Hazardous Waste Management
In this module, students will examine how solid and hazardous waste is generated; the pollution problems related to waste disposal; and methods of collection, handling, treatment and disposal of waste. Concepts of waste minimisation such as recycling, reusing, reducing and waste exchange will be highlighted as effective tools in waste management. Issues in biomedical waste generation, collection and treatment will be addressed. Local legislation for solid and hazardous waste will be explained in relation to the overall waste management practice.

Water & Marine Pollution
Students will be given an overview of water pollution and the impact of pollution on different types of water bodies like rivers, lakes and seas. They will learn the characteristics of polluted water bodies, types of waste streams and indicators of water pollution, waste disposal into rivers and the self-purification of river water systems. Eutrophication of lakes and reservoirs, marine pollution, its sources and impacts, and oil spill control at sea and beaches will also be covered.

LEISURE AND RETAIL MANAGEMENT CLUSTER
This cluster is aimed at helping students to develop the relevant knowledge and skills for managing a variety of service business and special facilities. It seeks to equip students with the basic knowledge and insights through the six modules, namely, Ecotourism, Retail Management, Hospitality Management, Event Promotion, Hotel & Recreation Facilities and Healthcare & Business Park Facilities.

Ecotourism
Ecotourism is considered the fastest growing market in the tourism industry. This module will help students to formulate and develop ecotourism programmes in order to enable people to enjoy and learn about the natural, historical and cultural characteristics of unique environments while preserving the integrity of the sites as well as meeting tougher environmental requirements.

Retail Management
This module is designed for students who have a strong foundation and interest in Property Management. It delves further into the strategies that will improve the positioning of a shopping mall, the leasing issues and its day-to-day management. Case studies will be used extensively for illustration.

Hospitality Management
In this module, students will learn how the effective management of real estates in the hospitality industry (hotels, serviced apartments, lofts and resorts) will contribute to both Singapore’s economy and property investors’ growth. They will also learn how operating effectiveness and preventive maintenance programmes for the various departments and functions in hotels, serviced apartments, lofts and resorts can save operating costs and increase the values of these real estates.

Events & Promotion
This module investigates the structure and nature of the event planning and management process, and the role of events in the built environment. Students will develop knowledge and acquire event-specific skills. Through the planning and managing of an event, they will apply the event planning and management process, and undertake some operational management responsibilities.

Hotel & Recreation Facilities
This module will provide students with an overview of major specialised facilities in hospitality and recreational facilities. It will cover facilities in theme parks, hotels and resorts. Topics covered include rides and simulators, laser shows, musical fountains, air conditioning for hotel guest rooms and function rooms, kitchen equipment and kitchen exhaust system, filtration system for swimming pools, hot water system and steam generation.

Healthcare & Business Park Facilities
This module will provide students with an overview of major specialised facilities in healthcare and business parks that house microelectronic, IT, pharmaceutical and biotechnology companies. Topics covered include cleanroom environment, biosafety laboratory, quality power supply, uninterruptible power supply, ultra-clean water supply, and management of hazardous waste.